1. The sides of a triangle are in the ratio of 2 : 3 : 4. Find the cosine of
 the smallest angle.

2. Find all solutions to
 \[x^{\log x} = \frac{x^3}{100} \]
 where \(\log x = \log_{10} x \).

3. Let \(p, q \) and \(r \) be integers such that
 \[f(x) = x^4 + 4x^3 + 6px^2 + 4qx + r \]
 is divisible by \(x^3 + 3x^2 + 9x + 3 \). Find \(p + q + r \).

4. If \(\sin x + \cos x = -1/5 \) and \(3\pi/4 \leq x \leq \pi \), find \(\cos(2x) \).

5. Show that
 \[\frac{1}{2} - \frac{1}{3} + \frac{1}{4} \cdots - \frac{1}{2005} + \frac{1}{2006} > \frac{1}{5} \cdot \]

6. Let \(f(x) = ax^2 + bx + c \) where \(a, b \) and \(c \) are integers and 5 divides \(f(n) \)
 for any integer \(n \). Show that \(a, b \) and \(c \) are each divisible by 5.

7. The real numbers \(a, b \) and \(c \) are such that \(a + b + c = 5 \) and
 \[\frac{1}{a+b} + \frac{1}{b+c} + \frac{1}{c+a} = \frac{2}{3} \cdot \]
 Find the value of
 \[\frac{c}{a+b} + \frac{a}{b+c} + \frac{b}{c+a} . \]

8. If a tetrahedron (a solid with 4 equilateral triangles as faces) has edge
 length 1 for each edge. What is the height of the tetrahedron?

9. A grasshopper jumps along a number line starting at the point 0. The
 first jump takes him 1 cm, the second 2 cm, the third 3 cm and so on. Each
 jump takes him to the right or to the left. Can the grasshopper return to the point 0 on the 73rd jump?

10. Can one find 2006 positive integers whose sum is equal to its product?